Answer:
Given:
mean, u = 6.2
sample size, n = 180
Sample mean, X' = 6.3
s.d [tex] \sigma [/tex] = 0.9
Significance level = 0.05
The null and alternative hypothesis will be:
H0 : u = 6.2
H1 : u > 6.2
Degree of freedom = 180 - 1 = 179
Using t table, the t critical value,
t> t(0.05, 179) = 1.6534
The test statistic:
[tex] t = \frac{X' - u}{\frac{\sigma}{\sqrt{n}}} [/tex]
[tex] T = \frac{6.3 - 6.2}{\frac{0.9}{\sqrt{180}}} = 1.4907 [/tex]
Since the test statistic(t calculated value) 1.4907 < t critical value (1.6534), we fail to reject the null hypothesis H0.