Answer:
The probability that a randomly selected score on the verbal section is higher than 165 is 0.0392
Step-by-step explanation:
We are given that The scores on the verbal section of the Graduate Records Examination (GRE) are approximately normally distributed with a mean of 150 and a standard deviation of 8.5.
Mean = [tex]\mu = 150[/tex]
Standard deviation =[tex]\sigma = 8.5[/tex]
We are supposed to find the probability that a randomly selected score on the verbal section is higher than 165 i.e.P(x>165)
Formula :[tex]Z=\frac{x-\mu}{\sigma}[/tex]
[tex]Z=\frac{165-150}{8.5}[/tex]
Z=1.76
Refer the z table for p value
P(x<165)=0.9608
P(x>165)=1-P(x<165)=1-0.9608=0.0392
Hence the probability that a randomly selected score on the verbal section is higher than 165 is 0.0392