Answer:
37 fringes
Explanation:
To find the values of the maxima number of fringes you use the following formula for the condition for constructive interference:
[tex]m\lambda=dsin\theta\\\\[/tex]
λ: wavelength
d: distance between slits
Furthermore, you use the fact that the maximum order m of the fringes is obtain for an angle of 90°, that is:
[tex]m=\frac{dsin\theta}{\lambda}\\\\m_{max}=\frac{d}{\lambda}[/tex]
you replace the values of the parameters to obtain the maximum order:
[tex]m_{max}=\frac{1.08*10^{-2}*10^{-3}}{590*10^{-9}m}=18.3\approx18[/tex]
that is, there are 18 fringes above the central maximum, the total fringes will be twice this value plus the central maximum
Total fringes = 2*18+1=37 fringes