Answer:
A. the angular velocity is 13.2 rad/seconds
B. The angular acceleration is [tex]8.67 rad/s^{2}[/tex]
Explanation:
A
The angular velocity of the swinging arm can be calculated using the formula:
[tex]\omega =\frac{\theta}{t}[/tex]
in our case the angular displacement, [tex]\theta = \frac{2\times 2\pi \times r}{r}= 4\pi radians[/tex]
time, t = 0.95 seconds
Therefore, angular velocity =[tex]\frac{4 \pi}{0.95}=13.2 rad/s[/tex]
B.
Since the arm starts swinging from rest, the angular velocity of the arm at that point is zero.
The angular acceleration can be calculated using the formula:
[tex]\alpha = \frac{d\omega}{dt} = \frac{13 - 0}{1.5}= 8.67 rad/s^{2}[/tex]
hence, the angular acceleration [tex]8.67 rad/s^{2}[/tex]