Please consider the diagram of cylinder.
We have been given that the mass of the cylinder is 50000 g. We are asked to find the density of the cylinder.
[tex]\text{Density}=\frac{\text{Mass}}{\text{Volume}}[/tex]
Let us find the volume of our given cylinder.
[tex]V=\pi r^2 h[/tex], where
r = Radius,
h = Height.
We know that radius is half the diameter, so radius of given cylinder would be [tex]\frac{28}{2}=14[/tex] mm.
[tex]V=\pi\cdot(14 \text{ mm})^2\cdot 30\text{ mm}[/tex]
[tex]V=\pi\cdot 196\text{ mm}^2\cdot 30\text{ mm}[/tex]
[tex]V=\pi\cdot 5880\text{ mm}^3[/tex]
[tex]V=18472.5648031\text{ mm}^3[/tex]
[tex]\text{Density}=\frac{50000\text{ g}}{18472.5648031\text{ mm}^3}[/tex]
[tex]\text{Density}=2.7067167192510906\cdot \frac{\text{g}}{\text{ mm}^3}[/tex]
[tex]\text{Density}\approx2.7\frac{\text{g}}{\text{ mm}^3}[/tex]
Therefore, the density of the cylinder is approximately 2.7 gram per cubic mm.