Answer:
22J
Explanation:
Given :
radius 'r'= 3cm
rotational inertia 'I'=4.5 x [tex]10^{-3}[/tex] kgm²
mass on one side of rope '[tex]m_{1[/tex]'= 2kg
mass on other side of rope'[tex]m_{2[/tex]' =4kg
velocity'v' of mass [tex]m_{2[/tex]' = 2m/s
Angular velocity of the pulley is given by
ω = v /r => 2/ 3x [tex]10^{-2[/tex]
ω = 66.67 rad/s
For the rotating body, we have
KE = [tex]\frac{1}{2}[/tex] I ω²
[tex]KE_p = \frac{1}{2} (4.5 *10^{-3} )(66.67^{2} )[/tex]
[tex]KE_p[/tex] = 10J
Next is to calculate kinetic energy of the blocks :
[tex]KE_{b} = \frac{1}{2} (m_1 + m_2).v^2\\KE_b= \frac{1}{2} (2+4).2^2[/tex]
[tex]KE_b[/tex]=12J
Therefore, the total kinetic energy will be
KE = [tex]KE_p + KE_b[/tex] =10 + 12
KE= 22J