A small block is sent through point A with a speed of 7 m/s. Its path is without friction until it reaches the section of length L = 12 m, where the coefficient of kinetic friction is 0.7. The heights are h1 = 6 m and h2 = 2 m. What are the speed of the block at (a) point B and (b) point C? c) Does the block reach point D? If so, what is its speed; if not, how far through the section does it travel? (a) 12.9 m/s, (b) 11.3 m/s, (c) No, 9.3 m

Respuesta :

Answer:

a) 12.9 m/s

b) 11.3 m/s

c) 9.3 m

Explanation:

Given that

Speed o the block, v(o) = 7 m/s

Length of the section, l = 12 m

Coefficient of kinetic friction, μ = 0.7

Heights h1 and h2 = 6 m and 2 m

v² = v(o)² + 2gh

v² = 7² + 2 * 9.8 * 6

v² = 49 + 117.6

v² = 166.6

v = √166.6

v = 12.91 m/s

v² = v(o)² + 2g(h1 - h2)

v² = 7² + 2 * 9.8 * 4

v² = 49 + 78.4

v² = 127.4

v = √127.4

v = 11.29 m/s

k = 1/2mv²

k = 1/2 * m * 11.29²

k = 63.73m

k = (μmg)d

63.73m = 0.7 * m * 9.8 * d

d = 63.73 / 6.86

d = 9.29 m

The block doesn't reach D. A further explanation is below.

(A)

By using the law of conservation of energy, we get

→                           [tex]Energy \ at \ A = Energy \ at \ B[/tex]

→ [tex](0.5\times m\times u^2)+(m\times g\times h_1) = 0.5\times m\times v^2[/tex]

                 [tex](0.5\times 7^2)+(9.8\times 6) = 0.5\times v^2[/tex]

                                                [tex]v = 12.9 \ m/sec[/tex] (Speed at B)

(B)

→   [tex]Energy \ at \ B = Energy \ of \ C[/tex]

→ [tex](0.5\times m\times v^2) = (m\times g\times h_2)+(0.5\times m\times v_2^2)[/tex]

        [tex]0.5\times 12.9^2 = (9.8\times 2)+(0.5\times v_2^2)[/tex]

                      [tex]v_2 = 11.3 \ m/sec[/tex] (Speed at C)

(C)

Work done by the frictional force = Change in K.E

→               [tex]-fk\times L = -0.5\times m\times v_2^2[/tex]

   [tex]mu_k\times g\times m\times L = 0.5\times m\times v_2^2[/tex]

          [tex]0.7\times 9.8\times L=0.5\times 11.3^2[/tex]

                            [tex]L = 9.3 \ m[/tex]

9.3 m < 12 m

Thus the above answer is correct.                          

Learn more:

https://brainly.com/question/13199734