Respuesta :
Answer:
(a) 1.05 × 10²¹ atoms of C
(b) 1.37 × 10⁹ atoms of C-14
(c) k = 3.13 × 10⁻¹² s⁻¹
(d) 951 decays/wk
(e) 9950 yr
Explanation:
(a) Number of C atoms
(i) Moles of C
[tex]\text{Moles of C} = \text{0.0210 g C} \times \dfrac{\text{1 mol C}}{\text{12.01 g C}} = 1.749 \times 10^{-3}\text{ mol C}[/tex]
(ii) Number of C atoms [tex]\text{No. of atoms} = 1.749 \times 10^{-3} \text{ mol C} \times \dfrac{6.022 \times 10^{23}\text{ atoms C}}{\text{1 mol C}} =\mathbf{1.05 \times 10^{21}} \textbf{ atoms C}[/tex]
(b) Number of C-14 atoms [tex]\text{No. of C-14 atoms} =1.05 \times 10^{21} \text{ atoms C} \times \dfrac{\text{1 C-14 atom}}{7.7 \times 10^{11}\text{ C atoms}} = \mathbf{1.37 \times 10^{9}}\textbf{ C-14 atoms}[/tex]
(c) Decay constant
[tex]t_{1/2} = \dfrac{\ln2}{k}\\\\k = \dfrac{\ln 2 }{ t_{1/2}} = \dfrac{\ln 2 }{ \text{ 5730 yr}} = 1.210 \times 10^{-4} \text{ yr}^{-1}\\\\k = 1.210 \times 10^{-4} \text{ yr}^{-1} \times \dfrac{\text{1 yr}}{\text{365.25 da}} \times \dfrac{\text{1 da}}{\text{24 h}} \times \dfrac{\text{1 h}}{\text{3600 s}} =\mathbf{3.83 \times 10^{-12}} \textbf{ s}^{\mathbf{-1}}[/tex]
(d) Corrected decays
The counter is only 88.0 % efficient.
[tex]\text{Corrected decays} = \text{837 detected/wk} \times \dfrac{\text{100 actual}}{\text{88.0 detected }} = \text{951 actual/week}[/tex]
(e) Age of specimen
The equation for the activity A of a sample is
A = kN
When the specimen was alive, the activity was
[tex]A = 1.37 \times 10^{9}\text{ atoms}\times3.834 \times 10^{-12} \text{ s}^{-1} \times \dfrac{\text{3600 s}}{\text{1 h}}\times \dfrac{\text{24 h}}{\text{1 da}} \times \dfrac{\text{7 da}}{\text{1 wk}}= \text{3170 atoms/wk}[/tex]
Now, the activity of the specimen is 951 atoms/wk.
[tex]\begin{array}{rcl}\ln \left ( \dfrac{A_{0}}{A} \right )& =& kt\\\\\ln \left ( \dfrac{3170}{951} \right )& =&1.21 \times 10^{-4} \text{ yr}^{-1}\times t\\\\\ln 3.333& =&1.210 \times 10^{-4} \text{ yr}^{-1} \times t\\\\1.204 & =& 1.210 \times 10^{-4} \text{ yr}^{-1}\times t\\\\t &=& \dfrac{\text{1.204}}{1.210 \times 10^{-4} \text{ yr}^{-1}\times t}\\\\& = & \textbf{9950 yr}\\\end{array}\\\text{The age of the specimen is $\textbf{9950 yr}$}[/tex]