Respuesta :

Answer:

2222222222

Step-by-step explanation:

Answer:

60

See steps

Step by Step Solution:

More Icon

Reformatting the input :

Changes made to your input should not affect the solution:

(1): "2.7" was replaced by "(27/10)". 8 more similar replacement(s)

STEP

1

:

          27

Simplify   ——

          10

Equation at the end of step

1

:

   27 62   93 12    62 93    12 27

(((——•——)-(——•——))+(——•——))-(——•——)

   10 10   10 10    10 10    10 10

STEP

2

:

          6

Simplify   —

          5

Equation at the end of step

2

:

   27 62   93 12    62 93    6 27

(((——•——)-(——•——))+(——•——))-(—•——)

   10 10   10 10    10 10    5 10

STEP

3

:

          93

Simplify   ——

          10

Equation at the end of step

3

:

   27 62   93 12    62 93   81

(((——•——)-(——•——))+(——•——))-——

   10 10   10 10    10 10   25

STEP

4

:

          31

Simplify   ——

          5

Equation at the end of step

4

:

   27 62   93 12    31 93   81

(((——•——)-(——•——))+(——•——))-——

   10 10   10 10    5  10   25

STEP

5

:

          6

Simplify   —

          5

Equation at the end of step

5

:

   27 62   93 6   2883  81

(((——•——)-(——•—))+————)-——

   10 10   10 5    50   25

STEP

6

:

          93

Simplify   ——

          10

Equation at the end of step

6

:

   27 62   93 6   2883  81

(((——•——)-(——•—))+————)-——

   10 10   10 5    50   25

STEP

7

:

          31

Simplify   ——

          5

Equation at the end of step

7

:

   27   31     279     2883     81

(((—— • ——) -  ———) +  ————) -  ——

   10   5      25       50      25

STEP

8

:

          27

Simplify   ——

          10

Equation at the end of step

8

:

   27   31     279     2883     81

(((—— • ——) -  ———) +  ————) -  ——

   10   5      25       50      25

STEP

9

:

Calculating the Least Common Multiple

9.1    Find the Least Common Multiple

    The left denominator is :       50

    The right denominator is :       25

      Number of times each prime factor

      appears in the factorization of:

Prime

Factor   Left

Denominator   Right

Denominator   L.C.M = Max

{Left,Right}

2 1 0 1

5 2 2 2

Product of all

Prime Factors  50 25 50

    Least Common Multiple:

    50

Calculating Multipliers :

9.2    Calculate multipliers for the two fractions

  Denote the Least Common Multiple by  L.C.M

  Denote the Left Multiplier by  Left_M

  Denote the Right Multiplier by  Right_M

  Denote the Left Deniminator by  L_Deno

  Denote the Right Multiplier by  R_Deno

 Left_M = L.C.M / L_Deno = 1

 Right_M = L.C.M / R_Deno = 2

Making Equivalent Fractions :

9.3      Rewrite the two fractions into equivalent fractions

Two fractions are called equivalent if they have the same numeric value.

For example :  1/2   and  2/4  are equivalent,  y/(y+1)2   and  (y2+y)/(y+1)3  are equivalent as well.

To calculate equivalent fraction , multiply the Numerator of each fraction, by its respective Multiplier.

 L. Mult. • L. Num.      837

 ——————————————————  =   ———

       L.C.M             50

 R. Mult. • R. Num.      279 • 2

 ——————————————————  =   ———————

       L.C.M               50  

Adding fractions that have a common denominator :

9.4       Adding up the two equivalent fractions

Add the two equivalent fractions which now have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

837 - (279 • 2)     279

———————————————  =  ———

     50            50

Equation at the end of step

9

:

 279    2883     81

(——— +  ————) -  ——

 50      50      25

STEP

10

:

Adding fractions which have a common denominator

10.1       Adding fractions which have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

279 + 2883     1581

——————————  =  ————

   50          25

Equation at the end of step

10

:

1581    81

———— -  ——

25     25

STEP

11

:

Adding fractions which have a common denominator

11.1       Adding fractions which have a common denominator

Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:

1581 - (81)     60

———————————  =  ——

   25          1

Final result :

60