* Pls Iā€™m being timed *
Find the approximate perimeter of VEN plotted below.
Round your final answer to the nearest hundredth.

Pls Im being timed Find the approximate perimeter of VEN plotted below Round your final answer to the nearest hundredth class=

Respuesta :

Answer:

ā‰ˆ 29.03

Step-by-step explanation:

from the photo, we can find the coordinates of the 3 points are:

  • V (1, 7)
  • E (-3, -4)
  • N (5, 7)

To find the approximate perimeter of VEN, we need to know the lenght of 3 sides. Let's find them:

As we know, the distance of two points can be determined by this formula:[tex]d=\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2}[/tex]

So that, the distance of:

VN = [tex]\sqrt{(5-1)^2+(7-7)^2} = \sqrt{4^{2} } = 4[/tex]

EN = [tex]\sqrt{(5-(-3))^2+(7-(-4))^2} = \sqrt{8^{2}+11^{2} } =\sqrt{185}[/tex]

EV = [tex]\sqrt{(1-(-3))^2+(7-(-4))^2} = \sqrt{4^{2}+11^{2} } =\sqrt{137}[/tex]

=> the approximate perimeter of VEN is:

VN + EN + EV

= 4 + [tex]\sqrt{185} + \sqrt{137}[/tex]

ā‰ˆ 29.03