Answer:
ā 29.03
Step-by-step explanation:
from the photo, we can find the coordinates of the 3 points are:
- V (1, 7)
- E (-3, -4)
- N (5, 7)
To find the approximate perimeter of VEN, we need to know the lenght of 3 sides. Let's find them:
As we know, the distance of two points can be determined by this formula:[tex]d=\sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2}[/tex]
So that, the distance of:
VN = [tex]\sqrt{(5-1)^2+(7-7)^2} = \sqrt{4^{2} } = 4[/tex]
EN = [tex]\sqrt{(5-(-3))^2+(7-(-4))^2} = \sqrt{8^{2}+11^{2} } =\sqrt{185}[/tex]
EV = [tex]\sqrt{(1-(-3))^2+(7-(-4))^2} = \sqrt{4^{2}+11^{2} } =\sqrt{137}[/tex]
=> the approximate perimeter of VEN is:
VN + EN + EV
= 4 + [tex]\sqrt{185} + \sqrt{137}[/tex]
ā 29.03