Water at a gauge pressure of 3.8 atm at street level flows into an office building at a speed of 0.78 m/s through a pipe 5.0 cm in diameter. The pipe tapers down to 2.8 cm in diameter by the top floor, 16 m above, where the faucet has been left open.
Calculate the flow velocity and the gauge pressure in the pipe on the top floor. Assume no branch pipes and ignore viscosity.

Respuesta :

Answer:

[tex]v_2[/tex] = 2.49 m/s  

[tex]P_2[/tex]  = 2.19 atm

Explanation:

By using continuity equation:

[tex]v_2[/tex] = ([tex]A_1[/tex][tex]v_1[/tex]) / [tex]A_2[/tex] = ([tex]d_1 / d_2[/tex])²[tex]v_1[/tex] = (5/2.8)² x 0.78 = 2.49 m/s  

By using Bernoulli’s Equation:

[tex]P_1[/tex] + ρg[tex]h_1[/tex] + ½ρ ([tex]v_1[/tex] )²= [tex]P_2[/tex] + ρg[tex]h_2[/tex] + ½ρ([tex]v_2[/tex] )²              

[[tex]v_1[/tex] ² -[tex]v_2[/tex] ²] /2  = ([tex]P_2[/tex]-[tex]P_1[/tex] )/ ρ + g([tex]h_2[/tex] - [tex]h_1[/tex])

(0.78²- 2.49²)/2 = ([tex]P_2[/tex]-[tex]P_1[/tex] )/ 1000 + (9.8 x 16)  

-5.6= ([tex]P_2[/tex]-[tex]P_1[/tex] )/ 1000 + (156.8)

([tex]P_2[/tex]-[tex]P_1[/tex] ) = - 162400 Pa  

[tex]P_2[/tex] = [tex]P_1[/tex] -162400,   [tex]P_1[/tex] = 3.8atm = 385035 Pa  

[tex]P_2[/tex]  = 385035-162400 = 222635 Pa ( gauge  pressure)

[tex]P_2[/tex]  = 222635 Pa=> 2.19 atm

Answer:

The flow velocity is   [tex]v_A = 2.4869 \ m/s[/tex]

The  gauge pressure is  [tex]P_B = 2.249 \ atm[/tex]

Explanation:

The diagram for this question is shown on the first uploaded image

From the question we are told that

       The gauge pressure [tex]P_A = 3.8 \ atm = 3.8 * 101325 = 385035 \ Pa[/tex]

        The speed of flow is  [tex]v_A = 0.78 m/s[/tex]

        The diameter of the pipe is [tex]d = 5.0 cm = \frac{5}{100} = 0.05 \ m[/tex]

         The diameter at the top floor is [tex]d_1 = \frac{2.8}{100} = 0.028 \ m[/tex]

          The the height from the ground is  [tex]h_B = 16 m[/tex]

So we are going to make some assumption

 We would assume that the position on the street is A

    and the position on the top floor is B

So from continuity equation the velocity of the flow in the street is

             [tex]v_A = \frac{V_B * a_B}{a_A}[/tex]

Where  

           [tex]a_A[/tex] is the area of the pipe at the base

 So    

            [tex]a_A = \frac{\pi d^2}{4}[/tex]

            [tex]a_A = \frac{ 3.142 * (5)^2}{4}[/tex]  

            [tex]a_A =19.64 m^2[/tex]  

  and  [tex]a_B[/tex] i the area of the pipe at the top floor

          [tex]a_B = \frac{\pi d^2}{4}[/tex]

substituting values

          [tex]a_B = \frac{ 3.142 * (2.8) }{4}[/tex]

          [tex]a_B = 6.16 \ m^2[/tex]

So

       [tex]v_A = \frac{0.78 * 19.64 }{6.16}[/tex]

      [tex]v_A = \frac{0.78 * 19.64 }{6.16}[/tex]

       [tex]v_A = 2.4869 \ m/s[/tex]

Applying Bernoulli's equation

        [tex]P_A + \rho g h_A + \frac{1}{2} \rho v_A ^2 = P_2 + \rho g h_B + \frac{1}{2} \rho v_B^2[/tex]

Since the pipe started from the floor [tex]h_A = 0m[/tex]

Here the [tex]\rho[/tex] is the density of water with value [tex]\rho = 1000 \ kg/m^3[/tex]

Substituting values

  [tex]385035 + (1000* 9.8 * 0 ) + \frac{1}{2} * 1000 * 0.78^2 = \\[/tex]

                                                   [tex]P_B + 1000 * 9.81 *16 + \frac{1}{2} * 1000 * 2.487^2[/tex]

[tex]P_B = 225446.6 \ Pa[/tex]

 Converting back to atm

         [tex]P_B = \frac{223446.6}{101325}[/tex]

        [tex]P_B = 2.249 \ atm[/tex]

     

Ver imagen okpalawalter8