Respuesta :

Answer:

2[(x - 3/4)^2 - 49/16]

Step-by-step explanation:

Factor 2x^2 - 3x-5=0 as follows:

2x^2 - 3x-5=0 = 2(x^2 - (3/2) - 5/2)

Now focus on  x^2 - (3/2)x - 5/2 alone.  

To complete the square, take half of the coeficient of x:  (1/2)(-3/2, or

-3/4.  Now square this, obtaining 9/16.

Going back to  x^2 - (3/2)x - 5/2, add in 9/16 and then subtract 9/16:

x^2 - (3/2)x + 9/16 - 9/16 -5/2

Rewrite x^2 - (3/2)x + 9/16 as the square of a binomial:  (x - 3/4)^2

Then we have:  (x - 3/4)^2 - 9/16 - 5/2, or

                         (x - 3/4)^2  - 9/16 - 40/16, or    

                         (x - 3/4)^2 - 49/16

Now go back to the original equation, 2x^2 - 3x-5=0, recall that this is equivalent to   2(x^2 - (3/2) - 5/2) .  Replace  x^2 - (3/2) - 5/2)  with

(x - 3/4)^2 - 49/16, obtaining 2[(x - 3/4)^2 - 49/16]

Answer:

(x-3/4)^2 = 49/16

Step-by-step explanation:

got it right on khan