Respuesta :

Answer:

(See explanation and attachment below for further details)

Step-by-step explanation:

The parabola must satisfy the following conditions:

[tex]y + 4 = C\cdot (x - k)^{2}[/tex]

[tex]y + 4 = C\cdot (x^{2}-2\cdot k \cdot x + k^{2})[/tex]

The expression for the x-intercepts are, respectively:

x = -3

[tex]4 = C\cdot [(-3)^{2} - 2\cdot k\cdot (-3)+k^{2}][/tex]

[tex]\frac{4}{C} = 9 + 6\cdot k + k^{2}[/tex]

x = 5

[tex]4 = C\cdot [5^{2}-2\cdot k \cdot (5)+k^{2}][/tex]

[tex]\frac{4}{C} = 25 - 10\cdot k + k^{2}[/tex]

By equalizing both expressions:

[tex]9 + 6\cdot k + k^{2} = 25 - 10\cdot k + k^{2}[/tex]

[tex]16\cdot k = 16[/tex]

[tex]k = 1[/tex]

And,

[tex]C = \frac{4}{25-10\cdot (1)+1^{2}}[/tex]

[tex]C = \frac{1}{4}[/tex]

The equation of parabola is:

[tex]y = \frac{1}{4}\cdot (x-1)^{2} - 4[/tex]

Whose graph is included as attachment.

Ver imagen xero099

Answer:

here iz da answer

Step-by-step explanation:

Ver imagen Prodigy36947