Respuesta :
Answer:
(f+g)(x)=5x-4
(f*g)(x)=(4x^2-19x-5)
(f-g)(3)=(-15)
Step-by-step explanation:
(f+g)(x)=(x-5)+(4x+1)=(5x-4)
(f*g)(x)=(x-5)(4x-1)=(4x^2-19x-5)
(f-g)(3)=(x-5)-(4x-1)=(3-5)-(4(3)+1)=(-2)-(12+1)=(-2)-(13)=-15 substitute 3 for x
Given:
Two functions 'f' and 'g' as,
f(x) = x - 5
g(x) = 4x + 1
To Find:
Composite functions,
(f + g)(x)
(f * g)(x)
(f - g)(x)
Solution:
Given functions are,
f(x) = x - 5
g(x) = 4x + 1
Expression for the composite functions will be,
(f + g)(x) = f(x) + g(x)
= (x - 5) + (4x + 1)
= 5x - 4
(f * g)(x) = f(x) × g(x)
= (x - 5)(4x + 1) [By distribution property]
= x(4x + 1) - 5(4x + 1)
= 4x² + x - 20x - 5
= 4x² - 19x - 5
(f - g)(x) = f(x) - g(x)
= (x - 5) - (4x + 1)
= x - 4x - 5 - 1
= -3x - 6
Therefore, (f - g)(3) = -3(3) - 6
= -9 - 6
= -15
Learn more about the composite functions from,
https://brainly.com/question/3386591