Answer:
Step-by-step explanation:
The mean absolute deviation is defined as
[tex]MAD=\frac{\sum |x_{i}-\mu |}{N}[/tex]
Where [tex]\mu[/tex] is the mean and [tex]N[/tex] is the total number of data.
The means is defined as
[tex]\mu = \frac{\sum x_{i} }{N}=\frac{25+28+20+22+32+28+35+34+30+36}{10}=\frac{290}{10}=29[/tex]
And, [tex]N=10[/tex]
Replacing these values, in the MAD formula, we have
[tex]MAD=\frac{|25-29|+|28-29|+|20-29|+|22-29|+|32-29|+|28-29|+|35-29|+|34-29|+|30-29|+|36-29|}{10} \\MAD=\frac{|-4|+|-1|+|-9|+|-7|+|3|+|-1|+|6|+|5|+|1|+|7|}{10}=\frac{44}{10}\\ MAD = 4.4[/tex]
Therefore, the Mean Absolute Vale (MAD) is 4.4