Use the method of symmetry to find the extreme value of each quadratic function and the value of x for which it occurs. g(x)=(5−x)(2x+3)
Pls give it in this form:

The x − intercepts of the graph of the function are (_ , _), (_ , _).
The midpoint of the x − intercepts is __ .
The extreme value is (a maximum or a minimum) .
g(__) =___________

Respuesta :

Answer:

The given function is

[tex]g(x)=(5-x)(2x+3)[/tex]

The x-intercepts of the graph are at [tex]g(x)=0[/tex]

[tex](5-x)(2x+3)=0[/tex]

[tex]5-x=0 \implies x=5\\2x+3=0 \implies 2x=-3 \implies x=-\frac{3}{2}[/tex]

Therefore, the x-intercepts are [tex](5,0)[/tex] and [tex](-\frac{3}{2},0)[/tex].

The midpoint can be found with the formula

[tex]P_{M}=(\frac{x_{1}+x_{2} }{2} ,\frac{y_{1} +y_{2} }{2} )[/tex]

[tex]P_{M}=(\frac{5-\frac{3}{2} }{2},0)\\P_{M}= (\frac{\frac{10-3}{2} }{2} ,0)\\P_{M}= (\frac{\frac{7}{2} }{2} ,0)\\ P_{M}= (\frac{7}{4} ,0)[/tex]

The minimum value about a parabola is at its vertex. In this case, the parabola has maxium vale only.

The vertex has coordinates of [tex]V(h,k)[/tex], where [tex]h=-\frac{b}{2a}[/tex] and [tex]k=f(h)[/tex].

Solving the product of the given expression

[tex]g(x)=(5-x)(2x+3)=10x+15-2x^{2} +-3x=-2x^{2} +7x+15[/tex]

Where [tex]a=-2[/tex], [tex]b=7[/tex] and [tex]c=15[/tex].

[tex]h=-\frac{b}{2a}=-\frac{7}{2(-2)}=\frac{7}{4}[/tex]

[tex]k=f(\frac{7}{4})=-2(\frac{7}{4} )^{2} +7(\frac{7}{4})+15 =-2(\frac{49}{16} )+\frac{49}{4}+15\\ k=-\frac{49}{8}+\frac{49}{4} +15=\frac{-49+98+120}{8} =\frac{169}{8}\\ k=\frac{169}{8}[/tex]

The x-intercept is [tex](5, 0) \ and \ (-\frac{3}{2}, 0 )[/tex]

The midpoint of the x-intercept is 1.75.

The extreme value is a minimum and the value is [tex]\frac{169}{8}[/tex]

Given the function g(x) expressed as;

[tex]g(x) = (5 - x)(2x+3)[/tex]

a) The x-intercept of the function occur at when g(x) = 0. Substitute g(x) = 0 into the function as shown:

[tex](5-x)(2x+3)=0\\5-x=0 \ and \ 2x+3 =0\\x = 5 \ and \ x=-\frac{3}{2}[/tex]

The x-intercept is [tex](5, 0) \ and \ (-\frac{3}{2}, 0 )[/tex]

b) The midpoint of the x-intercept is expressed as:

[tex]m= (\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2} )\\m=(\frac{5-1.5}{2}, 0)\\m=(\frac{3.5}{2},0 )\\m=(1.75, 0)[/tex]

The midpoint of the x-intercept is 1.75.

c) The extreme value occurs at g(k) = 0 where [tex]k=\frac{-b}{2a}[/tex]

Expand the function given

g(x)=(5−x)(2x+3)

g(x) = 10x + 15 - 2x² - 3x

g(x) =  - 2x² + 7x + 15

b = 7 and a = -2

[tex]k=-\frac{7}{2(-2)}\\k = \frac{7}{4}[/tex]

Get [tex]g(\frac{7}{4} )[/tex]

Recall that g(x) =  - 2x² + 7x + 15

[tex]g(\frac{7}{4} ) = - 2(\frac{7}{4} )^2 + 7(\frac{7}{4} ) + 15\\g(\frac{7}{4} ) =-2(\frac{49}{16} )+\frac{49}{4} +15\\g(\frac{7}{4} ) =-\frac{98}{16} +\frac{49}{4} +15\\g(\frac{7}{4} ) = \frac{169}{8}[/tex]

Hence the extreme value is a minimum and the value is [tex]\frac{169}{8}[/tex]

Learn more here: https://brainly.com/question/17207969