A double slit experiment is conducted with a red laser with wavelength l = 700 nm. The distance between the slits and the viewing screen is L = 2.00 m. Consider two experiments that have different slit spacings: Experiment A with dA = 2.00 μm and Experiment B with dB = 40.0 μm. For each experiment, calculate the following (be sure to keep at least three significant figures in all your intermediate calculations):
a) Using Δr = d sinθ , calculate the angle, q1, for the first maximum (constructive interference) above the central maximum. Experiment A and Experiment B
b) Using the angle you calculated in part a) and y = L tanθ , calculate y1, the location on the screen of the first maximum.Experiment A and Experiment B

Respuesta :

Answer:

a) [tex]\theta_A = 20.49^{0}[/tex],  [tex]\theta_B = 1.003^{0}[/tex]

b) y1 = 0.75 m, y2 = 0.035 m

Explanation:

Wavelength, [tex]\lambda = 700 nm = 700 * 10^{-9} m[/tex]

Distance between the slits and the viewing screen, L = 2m

Slit spacing for experiment A, [tex]d_{A} = 2 \mu m = 2 * 10^{-6} m[/tex]

Slit spacing for experiment B,  [tex]d_{B} = 40 \mu m = 40 * 10^{-6} m[/tex]

For maximum light intensity,  [tex]n \lambda = d sin \theta[/tex]

a) For experiment A,  [tex]n \lambda = d_A sin \theta[/tex]

n = 1 ( first maximum )

[tex]700 * 10^{-9} = 2 * 10^{-6} sin \theta_A\\sin \theta_A = \frac{700 * 10^{-9}}{2 * 10^{-6}} \\sin \theta_A = 0.35\\ \theta_A = sin^{-1} 0.35\\\theta_A = 20.49^{0}[/tex]

For experiment B,  [tex]n \lambda = d_B sin \theta[/tex]

n = 1 ( first maximum )

[tex]700 * 10^{-9} = 40 * 10^{-6} sin \theta_B\\sin \theta_B = \frac{700 * 10^{-9}}{40 * 10^{-6}} \\sin \theta_B = 0.0175\\ \theta_B = sin^{-1} 0.0175\\\theta_B = 1.003^{0}[/tex]

b) The location on the screen of the first maximum:

y =  L tanθ

L = 2 m

For experiment A, the location on the screen of the first maximum is calculated as:

[tex]y_1 = L tan \theta_{A}[/tex], [tex]\theta_A = 20.49^{0}[/tex]

[tex]y_1 = 2 tan 20.49\\y_1 = 0.75 m[/tex]

For experiment B, the location on the screen of the first maximum is calculated as:

[tex]y_2 = L tan \theta_{B}[/tex], [tex]\theta_B = 1.003^{0}[/tex]

[tex]y_2 = 2 tan 1.003\\y_2 = 0.035 m[/tex]