Respuesta :
Answer:
(See explanation for further information)
Explanation:
a) The distances of each planet with respect to the Sun is:
Mercury - [tex]57.909 \times 10^{6}\,mi[/tex]
Venus - [tex]67.240\times 10^{6}\,mi[/tex]
Earth - [tex]92.960\times 10^{6}\,mi[/tex]
Mars - [tex]141.600\times 10^{6}\,mi[/tex]
Jupiter - [tex]483.800\times 10^{6}\,mi[/tex]
Saturn - [tex]888.200\times 10^{6}\,mi[/tex]
Uranus - [tex]1,787\times 10^{6}\,mi[/tex]
Neptune - [tex]2,795\times 10^{6}\,mi[/tex]
b) The solutions are presented below:
A. The distance between Venus and Jupiter is:
[tex]\Delta s = 483.800\times 10^{6}\,mi-67.240\times 10^{6}\,mi[/tex]
[tex]\Delta s = 416.560\times 10^{6}\,mi[/tex]
B. The combined distance from the Sun is:
[tex]\Delta s = 57.909\times 10^{6}\,mi + 67.240\times 10^{6}\,mi +92.960\times 10^{6}\,mi[/tex]
[tex]\Delta s = 218.109\times 10^{6}\,mi[/tex]
Which is less than the distance from the Sun to Neptune ([tex]2,795\times 10^{6}\,mi[/tex]).
C. The new distance of Earth is [tex]929.60 \times 10^{6}\,mi[/tex] ([tex]929,600,000\,mi[/tex]). Saturn would be the closest planet to Earth, whose distance:
Scientific notation:
[tex]\Delta s = 929.600\times 10^{6}\,mi-888.200\,\times 10^{6}\,mi[/tex]
[tex]\Delta s = 41.4\times 10^{6}\,mi[/tex]
Standard notation:
[tex]\Delta s = 929,600,000\,mi - 888,200,000\,mi[/tex]
[tex]\Delta s = 41,400.000\,mi[/tex]