Respuesta :
Answer:
a) the temperature to which the pin must be cooled for assembly is [tex]T_2 = -101.89^ \ ^0}C[/tex]
b) the radial pressure at room temperature after assembly is [tex]P_f = 62.8 \ MPa[/tex]
c) the safety factor in the resulting assembly = 6.4
Explanation:
Coefficient of thermal expansion [tex]\alpha = 12.3*10^{-6} \ ^0 C[/tex]
Yield strength [tex]\sigma_y[/tex] = 400 MPa
Modulus of elasticity (E) = 209 GPa
Room Temperature [tex]T_1[/tex] = 20°C
outer diameter of the collar [tex]D_o = 95 \ mm[/tex]
inner diameter of the collar[tex]D_i = 60 \ mm[/tex]
pin diameter [tex]D_p[/tex] = [tex]60.03 \ mm[/tex]
Clearance c = 0.06 mm
a)
The temperature to which the pin must be cooled for assembly can be calculated by using the formula:
[tex](D_i - c )-D_p = \alpha * D_p(T_2-T_1)[/tex]
[tex](60-0.06)-60.03=12.3*10^{-6}*60.03(T_{2}-20^{0}C)[/tex]
-0.09 = [tex]7.38369*10^{-4}[/tex][tex](T_{2}-20^{0}C)[/tex]
-0.09 = [tex]7.38369*10^{-4}T_2[/tex] [tex]\ \ - \ \ 0.01476738[/tex]
[tex]-0.09 + 0.01476738[/tex] = [tex]7.38369*10^{-4}T_2[/tex]
−0.07523262 =[tex]7.38369*10^{-4}T_2[/tex]
[tex]T_2 = \frac{-0.07523262}{7.38369*10^{-4}}[/tex]
[tex]T_2 = -101.89^ \ ^0}C[/tex]
b)
To determine the radial pressure at room temperature after assembly ;we have:
[tex]P_f = \frac{E * (D_p-D_i)(D_o^2-D_1^2)}{D_i*D_o} \\ \\ \\ P_f = \frac{209*10^9* 0.03(95^2-60^2)}{60*95^2} \\ \\ P_f = 62815789.47 \ Pa \\ \\ P_f = 62.8 \ MPa[/tex]
c) the safety factor of the resulting assembly is calculated as:
safety factor = [tex]\frac{Yield \ strength }{walking \ stress}[/tex]
safety factor = [tex]\frac{400}{62.8}[/tex]
safety factor = 6.4
Thus, the safety factor in the resulting assembly = 6.4