answer both questions with work and process understandably shown.

Answer:
see below
Step-by-step explanation:
(x^2 -23) 2 -1
-------------------- + ------- = ------------
2x^2 -5x -3 x-3 2x+1
Factor the first term
(x^2 -23) 2 -1
-------------------- + ------- = ------------
(2x+1) (x-3) x-3 2x+1
Multiply both sides by (2x+1) (x-3) to get rid of the fractions
(x^2 -23) 2(2x+1) (x-3) -1
(2x+1) (x-3) -------------------- + ---------------------- = ------------(2x+1) (x-3)
(2x+1) (x-3) x-3 2x+1
Canceling like terms in the numerator and denominator, we are left with
(x^2 -23) + 2(2x+1) = -1(x-3)
Distribute
x^2 -23 +4x+2 = -x+3
Add x to each side
x^2 -23 +4x+x+2 = -x+x+3
x^2 -23 +5x+2 = 3
Subtract 3 from each side
x^2 -23 +5x+2-3 = 3-3
x^2 +5x -24 =0
Factor
(x+8)(x-3) =0
Using the zero product property
x+8 =0 x-3=0
x=-8 x=3
4x^2 -24x 3 -4
-------------------- + ------- = ------------
3x^2 -x -2 3x+2 x-1
Factor the first term
4x^2 -24x 3 -4
-------------------- + ------- = ------------
(3x+2) (x-1) 3x+2 x-1
Multiply both sides by (3x+2) (x-1) to get rid of the fractions
4x^2 -24x 3 -4
(3x+2) (x-1)-------------------- + ------- (3x+2) (x-1) = ------------(3x+2) (x-1)
(3x+2) (x-1) 3x+2 x-1
Canceling like terms in the numerator and denominator, we are left with
4x^2 -24x + 3 (x-1) =(3x+2)( -4)
Distribute
4x^2 -24x +3x-3 = -12x-8
Add 12x to each side
4x^2 -24x +3x-3 = -12x+12x-8
4x^2 -24x+3x+12x-3 = -8
Add 8 to each side
4x^2 -24x+3x+12x-3+8 = -8+8
4x^2 -9x+5 =0
Factor
(x-1)(4x-5) =0
Using the zero product property
x-1=0 4x-5=0
x=1 4x=5
x=1 x=5/4
Answer:
15. x = -8
16. x = 1¼ (1.25)
Step-by-step explanation:
15.
2x² - 5x - 3
2x² - 6x + x - 3
2x(x - 3) + 1(x - 3)
(2x + 1)(x - 3)
(x² - 23)/[(2x + 1)(x - 3)] + 2/(x - 3) = -1/(2x + 1)
Multiply the entire equation by (2x + 1)(x - 3)
x² - 23 + 2(2x + 1) = -1(x - 3)
x² - 23 + 4x + 2 + x - 3 = 0
x² + 5x - 24 = 0
x² + 8x - 3x - 24 = 0
x(x + 8) - 3(x + 8) = 0
(x - 3)(x + 8) = 0
x = -8, 3
x can not be 3 because the denominator becomes 0 at x = 3
So the only solution is x = -8
16.
3x² - x - 2
3x² - 3x + 2x - 2
3x(x - 1) + 2(x - 1)
(3x + 2)(x - 1)
(4x² - 24x)/[(3x + 2)(x - 1)] + 3/(3x + 2) = -4/(x - 1)
Multipy the entire equation by (3x + 2)(x - 1)
4x² - 24x + 3(x - 1) = -4(3x + 2)
4x² - 24x + 3x - 3 + 12x + 8 = 0
4x² - 9x + 5 = 0
4x² - 4x - 5x + 5 = 0
4x(x - 1) - 5(x - 1) = 0
(4x - 5)(x - 1) = 0
x = 5/4, 1
x can not be 1 because the denominator becomes 0 at x = 1
So the only solution is x = 5/4 or 1¼