Solve the following equation by completing the square. 1/4x^2+x+1/4=0
A. X=-2+sqrt(3) or x=2-sqrt(3)
B. X=1 or x=-5
C. X=2+sqrt(3) or x=2-sqrt(3)
D. X=-2+sqrt(3) or -2-sqrt(3)
Please and Thank you!

Respuesta :

Answer:

D. X=-2+sqrt(3) or -2-sqrt(3)

[tex]x_{1} =-2+\sqrt{3} \\x_{2} =-2-\sqrt{3}[/tex]

Step-by-step explanation:

Quadratic Equation given:

[tex]$\frac{1}{4} x^2+x+\frac{1}{4}=0$[/tex]

In order to get rid of the fractions, multiply both sides by 4.

[tex]$\frac{1}{4}x^2\cdot \:4+x\cdot \:4+\frac{1}{4}\cdot \:4=0\cdot \:4$[/tex]

We get:

[tex]x^2+4x+1=0[/tex]

[tex]x^2+4x+4-4+1=0[/tex]

Completing the square:

[tex](x+2)^2-4+1=0\\[/tex]

[tex](x+2)^2-3=0[/tex]

[tex](x+2)^2=3[/tex]

[tex]x+2=\pm\sqrt{3}[/tex]

[tex]x=-2\pm\sqrt{3}[/tex]

[tex]x_{1} =-2+\sqrt{3} \\x_{2} =-2-\sqrt{3}[/tex]