vickyy2
contestada

A population has a mean of 5, with a standard deviation of 1. A sample of 50 iteams from that population has a mean of 4.5, with a standard deviation of 1.1. Which equation described the point estimate?

Respuesta :

Answer:

E =  u +  Z * σ/[tex]\sqrt{n}[/tex]

E = 5 + Z *1/[tex]\sqrt{50}[/tex]

Step-by-step explanation:

The test statistic is  Z =  [(E - u) / σ]*[tex]\sqrt{n}[/tex]  by formula with the estimator of the population mean.

The point estimate should be E., the sample mean

Z =  [(E - u) / σ]*[tex]\sqrt{n}[/tex]

for E= sample mean  from a set of n data

u = population mean  and σ = standard deviation,  normally you can approximate  the σ  with the sample standard deviation s.

so...

Solve for E,     (E - u) = Z * σ/[tex]\sqrt{n}[/tex]

E =  u +  Z * σ/[tex]\sqrt{n}[/tex],   my book says the point estimate is x-bar  which is the sample average.  ...with target parameter u = population mean

Z = [(4.5 - 5)/1] * [tex]\sqrt{50}[/tex] = -0.5 * 7.0710678

Z = - 3.5355

Our point estimate  or test statistic is -3.536 about.  so