Respuesta :

Answer:

c. [tex]\frac{1}{2 \sqrt{7} }[/tex]

Step-by-step explanation:

When plugging in zero into the given equation:

[tex]\lim_{x \rightarrow 0} \frac{\sqrt{x + 7} - \sqrt{7} }{x} = \frac{0}{0}[/tex]

Answer is in indeterminate form = use L'Hospital's Rule:

(Derivative of the top / Derivative of the bottom)

[tex]\lim_{x \rightarrow 0} \frac{ \frac{1}{2} (x + 7)^{ \frac{-1}{2}} - 0 }{1}[/tex]

Rearranged equation:

[tex]\lim_{x \rightarrow 0} \frac{1}{2 \sqrt{x + 7} }[/tex]

Plug zero back into equation:

[tex]\lim_{x \rightarrow 0} \frac{1}{2 \sqrt{x + 7} } = \frac{1}{2 \sqrt{0 + 7} } = \frac{1}{2 \sqrt{7} }[/tex]

Answer:

[tex]\lim_{x \rightarrow 0} \frac{\sqrt{x + 7} - \sqrt{7} }{x} = \frac{1}{2 \sqrt{7} }[/tex]