Suppose c and d vary inversely, and d = 2 when c = 17.


a. Write an equation that models the variation.
b. Find d when c = 68.
Note: Enter your answer and show all the steps that you use to solve this problem in the space provided.

Respuesta :

Answer and Step-by-step explanation:

[tex]Greetings![/tex]

[tex]I'm~here~to~answer~your~question![/tex]

[tex]\bold{NOTE:}~We~ can ~say~ that ~two ~variables~ are~ inversely ~proportional ~to ~each` other\\ when ~when ~the ~quantity ~of ~one ~decreases, ~the ~quantity ~of~ the~ other\\ increases.~ For~ example, ~when ~the ~speed ~increases, ~the ~time ~to~ complete\\ a ~trip ~decreases.[/tex]

[tex]\underline{\bold{It~is~given~that:}}[/tex]

[tex]d = 2 \\c = 17[/tex]

[tex]\underline{\bold{Inverse~ equation ~is ~like~ this:}}[/tex]

[tex]\boxed{~~c=\frac{k}{d}~ ~} ~~where ~k ~is~ the ~constant~ value.[/tex]

[tex]17=\frac{k}{2}[/tex]

[tex]12 \times 2=k[/tex]

[tex]34=k[/tex]

[tex]\underline{\bold{Now~ for ~part~ b:}}[/tex]

[tex]c=\frac{k}{d}[/tex]

[tex]c \times d=k[/tex]

[tex]d=\frac{k}{c}[/tex]

[tex]d=\frac{34}{68}[/tex]

[tex]d=0.5[/tex]

[tex]\bold{The ~value ~of~ d~ is~ 0.50}[/tex]

[tex]\underline{\bold{To~check:}}[/tex]

[tex]c=\frac{k}{d}[/tex]

[tex]c=\frac{34}{0.5}[/tex]

[tex]c=68[/tex]

[tex]\bold{Thus,~the~answer~is~correct!}[/tex]

Given:

d = 2

c = 17

a)

Inverse equation is like this:

c = k/d

where k is the constant value.

17 = k/2

17 * 2 = k

34 = k

b)

c = k/d

c*d = k

d = k/c

d = 34/68

d = 0.5

The value of d is 0.50

To check:

c = k/d

c = 34 / 0.5

c = 68