Respuesta :

Answer:

log [ (3/2) *[tex]\sqrt{x}[/tex]  * ([tex]x^{3}[/tex]  +  4)  ] = ( log 9 + 1/2 log x + log (x cubed + 4) - log 6 )

Step-by-step explanation:

I do not see answer choices, but I will simplify this expression.

( log 9 + 1/2 log x + log (x cubed + 4) - log 6 )

=  log 9 -  log 6  + 1/2 log x + log (x cubed + 4)

=  log (9/6) + 1/2 log x + log (x cubed + 4),

I simply used the Quotient Rule for Logs

=  log (9/6) + 1/2 log x + log (x cubed + 4),

=  log (3/2)  + 1/2 log x + log (x cubed + 4),

=  log (3/2)  +  log x^(1/2)  + log (x cubed + 4),

Power Rule for logs

=  log (3/2)  +  log x^(1/2)  + log (x cubed + 4),

=  log  (  (3/2)* x^(1/2) * (x cubed + 4) )

Applying Product Rule for Logs

=  log  (  (3/2)* x^(1/2) * (x cubed + 4) )

=  log [ (3/2) *[tex]\sqrt{x}[/tex]  * ([tex]x^{3}[/tex]  +  4)  ]