hajarihab
contestada

A current of 5 A exists in a copper wire of length 50 m and diameter of 2.5 mm when applying a
potential difference of 0.86 V. Assuming the current is uniform, calculate
(a) the current density
(b) electron drift speed.
(c) the copper conductivity​

Respuesta :

Answer:

a) 1273.23 A/m^2

b) 7.19*10^-5 m/s

c) 236881.7 Ohms

Explanation:

(a) To find the current density you use the following formula:

[tex]J=\frac{I}{A}=\frac{I}{\pi r^2}[/tex]

I: current in the wire

A: cross area of the wire

r: radius of the wire

[tex]J=\frac{5A}{\pi(1.25*10^{-3}m)^2}=1273.23\frac{A}{m^2}[/tex]

(b) The electron drift speed is given by:

[tex]v_d=\frac{I}{nqA}=\frac{I}{nq\pi r^2}[/tex]

n: number of conduction electrons per m^3

q: charge of the electron = 1.6*10^-19C

The number of free electrons is calculated by using:

[tex]n=\frac{\rho N_A}{M}\\\\n=\frac{(9*10^{3}kg/m^3)(6.22*10^{23})}{63.54*10^{-3}}=8.5*10^{28}[/tex]

Next, you replace the values of the parameters in the equation for vd:

[tex]v_d=\frac{5A}{(8.85*10^{28}m^{-3})(1.6*10^{-19}C)\pi (1.25*10^{-3}m)^2}\\\\v_d=7.19*10^{-5}\frac{m}{s}[/tex]

(c) The conductivity is given by:

[tex]\sigma=\frac{L}{RA}[/tex]

You first calculate R:

[tex]R=VI=(0.86V)(5A)=4.3\Omega[/tex]

Next, replace for sigma:

[tex]\sigma=\frac{50m}{(4.3\Omega)(\pi (1.25*10^{-3}m)^2)}=236881.7\Omega^{-1}m^{-1}[/tex]