Respuesta :

Answer: ( x - 1 )( x - 2 )( x - 3 )

Step-by-step explanation:

Ver imagen folarin7

Factorization involves splitting a function into factors..

The factorized expression is [tex]P(x)= (x - 3)(x - 2) (x -1)[/tex]

The function is given as:

[tex]p(x) =x^3 - 6x^2 + 11x - 6[/tex]

Start by calculating p(1) to determine if x - 1 is a root of the polynomial

[tex]p(1) =1^3 - 6(1)^2 + 11(1) - 6[/tex]

[tex]p(1) =0[/tex]

Since P(1) equals 0, then x - 1 is a root of the polynomial.

Divide both sides of [tex]p(x) =x^3 - 6x^2 + 11x - 6[/tex] by x - 1

[tex]\frac{P(x)}{x - 1} = \frac{x^3 - 6x^2+11x - 6}{x - 1}[/tex]

Factorize the numerator

[tex]\frac{P(x)}{x - 1} = \frac{( x - 1 )(x^2 - 5x + 6 )}{x - 1}[/tex]

Cancel out common factor

[tex]\frac{P(x)}{x - 1} = x^2 - 5x + 6[/tex]

Expand

[tex]\frac{P(x)}{x - 1} = x^2 - 2x - 3x + 6[/tex]

Factorize

[tex]\frac{P(x)}{x - 1} = x(x - 2) - 3(x - 2)[/tex]

Factor out x - 2

[tex]\frac{P(x)}{x - 1} = (x - 3)(x - 2)[/tex]

Multiply though by x - 1

[tex]P(x)= (x - 3)(x - 2) (x -1)[/tex]

Hence, the factorized expression is [tex]P(x)= (x - 3)(x - 2) (x -1)[/tex]

Read more about factorization at:

https://brainly.com/question/11579257