Respuesta :

Answer:

c = 7[tex]\sqrt{3}[/tex]

Step-by-step explanation:

Using the sine ratio in the left right triangle and the exact value

sin45° = [tex]\frac{\sqrt{2} }{2}[/tex], then

sin45° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{a}{7\sqrt{2} }[/tex] = [tex]\frac{\sqrt{2} }{2}[/tex] ( cross- multiply )

2a = 14 ( divide both sides by 2 )

a = 7

----------------------------------------------------------------

Using the tangent ratio in the right triangle and the exact value

tan30° = [tex]\frac{1}{\sqrt{3} }[/tex] , then

tan30° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{a}{c}[/tex] = [tex]\frac{7}{c}[/tex] = [tex]\frac{1}{\sqrt{3} }[/tex] ( cross- multiply )

c = 7[tex]\sqrt{3}[/tex]

-------------