complete the left-hand column of the table below following the steps indicated in the right-hand column. Calculation sin(2x)/sinx-cos(2x)/cos x
Reasons
- Given on the left side of the original problem...
- Apply the double-angle formulas for sine and cosine
- Simplify the expression
- Definition of secant

Respuesta :

I hope this helps you

Ver imagen MIRAGEE

An intercepting line in geometry, especially one that intersects a circle at two points. In Trigonometry, A ratio of both the hypotenuse to an edge adjacent to a given angle in a rectangle. It definite line from the edge of the circle via one of the arc's ends to the tangential from another.

Following are the calculation to the given question:

Given:

[tex]\bold{\frac{\sin(2x)}{sinx}- \frac{cos(2x)}{cos x}}[/tex]

Using formula:

[tex]\bold{\sin 2x=2\sin x \cos x}\\\\\bold{\cos 2x=\cos^2 x - \sin^2 x}\\\\[/tex]

Apply the value in the given question:

[tex]\to \bold{\frac{\sin(2x)}{sinx}- \frac{cos(2x)}{cos x}}[/tex]

[tex]\to \bold{\frac{2 \sin x \cos x }{sinx}- \frac{(\cos^2 x -\sin^2 x) }{cos x}}\\\\\to \bold{2 \cos x - \frac{(\cos^2 x -\sin^2 x) }{cos x}}\\\\\to \bold{\frac{2 \cos^2 x - (\cos^2 x -\sin^2 x )}{cos x}}\\\\ \to \bold{\frac{2 \cos^2 x - \cos^2 x +\sin^2 x }{cos x}}\\\\ \to \bold{\frac{ \cos^2 x +\sin^2 x }{cos x}}\\\\ \to \bold{\frac{ 1 }{cos x}}\\\\ \to \bold{\sec x}\\\\[/tex]

So, the final answer is "sec x"

Learn more:

brainly.com/question/9872503

Otras preguntas