Respuesta :

Answer:

n = 6 + [tex]\sqrt{22}[/tex]  or  n = 6 - [tex]\sqrt{22}[/tex]

Step-by-step explanation:

We can solve this equation using the quadratic formula OR Completing the Square method.

n² + 14 = 12n

rearrange :  n² - 12n + 14  = 0  

here  a= 1 , b = -12,  c = 14

the quadratic formula says:   x =  - b/ (2a)  +  root(b^2 - 4ac) / (2a)

or  x =  - b/ (2a)  -  root(b^2 - 4ac) / (2a)

x =  - (-12)/ (2)  +  root((-12)^2 - 4*14) / (2)

x = 6  +  root (144 - 56) / 2

x = 6 + root(88)/2

x = 6 + root(4*22) / 2

x = 6 + 2*root(22)/2

x = 6 + root(22)  = 6 + [tex]\sqrt{22}[/tex]

so   x =6 + [tex]\sqrt{22}[/tex]   or  x = 6 - [tex]\sqrt{22}[/tex]

In this case  x = n

n = 6 + [tex]\sqrt{22}[/tex]  or  n = 6 - [tex]\sqrt{22}[/tex]

Answer:

Step-by-step explanation:

The quadratic formula is [tex]\frac{-b±\sqrt{b^{2}-4ac } }{2a}[/tex]

Ignore the weird A at the beginning, I don't know why it is there.

To get your equation into a quadratic equation, we have to move 12n to the other side, giving us

[tex]n^{2} -12n+14[/tex]

So in this case, our a=1, b=-12, and c=14. Remember [tex]ax^{2}+bx+c[/tex]

So we plug these values into our formula

[tex]\frac{12±\sqrt{144-4(14)} }{2}[/tex]. Again, ignore the weird A.

simplify and you will get

[tex]\frac{12±\sqrt{88} }{2}[/tex]

simplify the square root and you get [tex]2\sqrt{22}[/tex]

divide the [tex]2\sqrt{22}[/tex] and [tex]12[/tex] by the [tex]2[/tex] on the bottom and you will get [tex]\sqrt{22}[/tex] and [tex]6[/tex]

So your answers are [tex]6-\sqrt{22}[/tex] and [tex]6+\sqrt{22}[/tex]