A beaker contains a solution of two metal cations: 0.010 M La+3 and 0.010 M Zn2+.
As Na2CO3 is added both La2(CO3)3 and ZnCO3 eventually precipitate.
Ksp for La2(CO3)3 = 4.0 x 10-34 and the Ksp for ZnCO3 = 1.0 x 10-10.
What percentage of the original La3+ is still in the solution just as the Zn2+ begins to precipitate?

Respuesta :

znk

Answer:

[tex]\large \boxed{0.20 \, \% }[/tex]

Explanation:

(a) Calculate the [CO₃²⁻] needed to precipitate the Zn²⁺

Let x = [CO₃²⁻] when Zn²⁺ starts to precipitate.

The equation for the equilibrium is

ZnCO₃(s) ⇌ Zn²⁺(aq) + CO₃²⁻(aq); Ksp = 1.0 × 10⁻¹⁰

                  0.010             x

[tex]K_{sp} =\text{[Zn$^{2+}$][CO$_{3}^{2-}$]} = 0.010x = 1.0 \times 10^{-10}\\x = \dfrac{1.0 \times 10^{-10}}{0.010}\\\\\text{[CO$_{3}^{2-}$]} = x =\mathbf{1.0 \times 10^{-8}}[/tex]

The concentration of CO₃²⁻ when Zn²⁺ starts to precipitate is 1.0× 10⁻⁸ mol·L⁻¹.

2. Calculate [La³⁺] remaining in solution

La₂(CO₃)₂(s) ⇌ 2La³⁺(aq) + 3CO₃²⁻(aq)

                           x             1.0 × 10⁻⁸

[tex]K_{sp} =\text{[La$^{3+}$]$^{2}$[CO$_{3}^{2-}$]$^{3}$} =4.0 \times 10^{-34}\\x^{2} \times (1.0 \times 10^{-8})^{3} = 4.0 \times 10^{-34}\\x^{2} \times 1.0 \times 10^{-24} = 4.0 \times 10^{-34}\\x^{2} = \dfrac{4.0 \times 10^{-34}}{1.0 \times 10^{-24}}= 4.0 \times 10^{-10}\\\\\text{[La$^{3+}$]} = x = \mathbf{2.0 \times 10^{-5} \textbf{ mol/L}}[/tex]

3. Calculate the percentage of the original concentration

[tex]\text{Percent of original} = \dfrac{2.0 \times 10^{-5}}{0.010} \times \, 100 \, \% = \mathbf{0.20 \, \%}\\\text{ $\large \boxed{\mathbf{0.20 \, \% }}$ of the original La$^{3+}$ remains in solution.}[/tex]