Respuesta :

Answer: The value of [tex](f_\circ g)(x)[/tex]  is  [tex]4(x+1)^2[/tex]  .

Step-by-step explanation:

Given: [tex]f(x) = 4x^2 \text { and } g(x) = x+1[/tex]

To find: [tex](f_\circ g)(x)[/tex]

As we know it is composition function which means that  g(x) function is in f(x) function.

So we have

[tex](f_\circ g) (x) = f[g(x)][/tex]

[tex]\Rightarrow( f_\circ g)(x)= f(g(x)) = 4(g(x))^2[/tex]

Now substitute the value of g(x) we get

[tex](f_\circ g)(x)= 4(x+1)^2[/tex]

Hence, the value of [tex](f_\circ g)(x)[/tex]  is  [tex]4(x+1)^2[/tex]  .