Answer: The value of [tex](f_\circ g)(x)[/tex] is [tex]4(x+1)^2[/tex] .
Step-by-step explanation:
Given: [tex]f(x) = 4x^2 \text { and } g(x) = x+1[/tex]
To find: [tex](f_\circ g)(x)[/tex]
As we know it is composition function which means that g(x) function is in f(x) function.
So we have
[tex](f_\circ g) (x) = f[g(x)][/tex]
[tex]\Rightarrow( f_\circ g)(x)= f(g(x)) = 4(g(x))^2[/tex]
Now substitute the value of g(x) we get
[tex](f_\circ g)(x)= 4(x+1)^2[/tex]
Hence, the value of [tex](f_\circ g)(x)[/tex] is [tex]4(x+1)^2[/tex] .