The table below shows 4 examples of pairs of objects, their masses, and the distance between them. In which example is the gravitational force of attraction between the two objects the greatest

Answer:
example 2
Explanation:
The formula for gravitational force is:
[tex]F=G\frac{m_{1}m_{2}}{d^2}[/tex]
where [tex]G[/tex] is the universl constant of gravitation: [tex]G=6.67x10^{-11}Nm^2/kg^2[/tex]
[tex]m_{1}[/tex] is the first mass, [tex]m_{2}[/tex] is the second mass, and [tex]d[/tex] is the distance.
Analyzing the result of each option...
[tex]m_{1}=100kg\\m_{2}=200kg\\d=20km=20,000m[/tex]
substituting these values in the formula for gravitational force:
[tex]F=(6.67x10^{-11}Nm^2/kg^2)\frac{(100kg)(200kg)}{(20,000m)^2} \\\\F=(6.67x10^{-11}Nm^2/kg^2)(0.00005kg^2/m^2)\\\\F=3.335x10^{-15}N[/tex]
[tex]m_{1}=100kg\\m_{2}=200kg\\d=10km=10,000m[/tex]
substituting these values in the formula for gravitational force:
[tex]F=(6.67x10^{-11}Nm^2/kg^2)\frac{(100kg)(200kg)}{(10,000m)^2} \\\\F=(6.67x10^{-11}Nm^2/kg^2)(0.0002kg^2/m^2)\\\\F=1.334^{-14}N[/tex]
[tex]m_{1}=50kg\\m_{2}=100kg\\d=20km=20,000m[/tex]
substituting these values in the formula for gravitational force:
[tex]F=(6.67x10^{-11}Nm^2/kg^2)\frac{(50kg)(100kg)}{(20,000m)^2} \\\\F=(6.67x10^{-11}Nm^2/kg^2)(0.0000125kg^2/m^2)\\\\F=8.33x10^{-16}N[/tex]
[tex]m_{1}=50kg\\m_{2}=100kg\\d=10km=10,000m[/tex]
substituting these values in the formula for gravitational force:
[tex]F=(6.67x10^{-11}Nm^2/kg^2)\frac{(50kg)(100kg)}{(10,000m)^2} \\\\F=(6.67x10^{-11}Nm^2/kg^2)(0.00005kg^2/m^2)\\\\F=3.335x10^{-15}N[/tex]
The greatest gravitational attraction is the example 2:
[tex]F=1.334x10^{-14}N[/tex]