Respuesta :
Step-by-step explanation:
Step 1: Find the volume of the original pyramid
[tex]V = a^2*\frac{h}{3}[/tex]
[tex]V=(100)^2*\frac{75}{3}[/tex]
[tex]V=10000*25[/tex]
[tex]V=250000[/tex]
Step 2: Find the volume of the cut off
[tex]V=(20)^2*\frac{15}{3}[/tex]
[tex]V = 400*5[/tex]
[tex]V=2000[/tex]
Step 3: Find the percent that still remains
[tex]250000-2000[/tex]
[tex]248000[/tex]
[tex]248000 / 250000[/tex]
[tex]0.992*100[/tex]
[tex]99.2[/tex]
Answer: 99.2%
Answer:
99.2%
Step-by-step explanation:
Ratio of volumes = (Ratio of sides)³
Ratio of volumes = (15/75)³
Ratio of volumes = 1/125
1/125 × 100 = 0.8% was cut off
100 - 0.8 = 99.2% remains