Answer:
[tex]\angle B =155^{\circ} , \angle D =25^{\circ} and \angle D=155^{\circ}[/tex]
Step-by-step explanation:
[tex]\angle A = 25^{\circ}[/tex]
Vertically opposite angles : the angles opposite each other when two lines interest
So, ∠A is vertically opposite to ∠C
[tex]\angle A = \angle C[/tex] (Vertically opposite angles are equal)
So, [tex]\angle C = 25^{\circ}[/tex]
[tex]\angle A+\angle B = 180^{\circ}(\text{Linear pair})\\25^{\circ}+\angle B = 180^{\circ}\\\angle B = 180^{\circ}-25^{\circ}\\\angle B =155^{\circ}[/tex]
∠B is vertically opposite to ∠D
So,[tex]\angle B = \angle D[/tex] (Vertically opposite angles are equal)
So,[tex]\angle D = 155^{\circ}[/tex]
Hence [tex]\angle B =155^{\circ} , \angle D =25^{\circ} and \angle D=155^{\circ}[/tex]