If you deposit $4000 into an account paying 6% annual interest compounded semi-
annually, how
much money will be in the account after 5 years?
$5387.42
$5375.66
$6546.61
$4706.14

Respuesta :

qop

Answer:

B. $5,375.66

Step-by-step explanation:

Lets use the compound interest formula provided to solve this:

[tex]A=P(1+\frac{r}{n} )^{nt}[/tex]

P = initial balance

r = interest rate (decimal)

n = number of times compounded annually

t = time

First, change 6% into a decimal:

6% -> [tex]\frac{6}{100}[/tex] -> 0.06

Since the interest is compounded semi-annually, we will use 2 for n. Lets plug in the values now:

[tex]A=4,000(1+\frac{0.06}{2})^{2(5)}[/tex]

[tex]A=5,375.66[/tex]

Your answer is B. $5,375.66

[tex]Hello![/tex]

I say it's option B. $5375.66

[tex]\left[\begin{array}{ccc}PROCESS:\end{array}\right][/tex]

6% ⇒ [tex]\frac{6}{100}[/tex] ⇒ [tex]0.06[/tex]

[tex]A =[/tex] 4,000 [tex](1+ \frac{0.006}{2})[/tex] × [tex]2(5)[/tex]

[tex]A=[/tex] $[tex]5375.66[/tex]

[tex]\left[\begin{array}{ccc}ANSWER:\end{array}\right][/tex]

$5375.66

                                       [tex]MiraculousAlejandra[/tex]