Find the volume of the composite solid. Round your answer to the nearest tenth.

Answer:
The answer is 646 cm³.
Step-by-step explanation:
Firstly you have to seperate the solid into 2 shaoes, hemi-sphere and cube. Then calculate the volumes using the formula.
Given that the diameter of cube is 8cm so the radius is 8÷2 = 4cm :
Sphere,
[tex]v = \frac{2}{3} \times \pi \times {r}^{3} [/tex]
Let r = 4 cm,
[tex]v = \frac{2}{3} \times\pi \times {4}^{3} [/tex]
[tex]v = \frac{2}{3} \times \pi \times 64[/tex]
[tex]v = \frac{128}{3} \pi \: \: {cm}^{3} [/tex]
Cube,
[tex]v = l \times w \times h[/tex]
Let length be 8cm,
Let width be 8 cm,
Let height be 8 cm,
[tex]v = 8 \times 8 \times 8[/tex]
[tex]v = 512 \: \: \: {cm}^{3} [/tex]
Lastly, you have to add up both volumes together :
[tex]v = \frac{128}{3} \pi + 512[/tex]
[tex]v = 646 \: {cm}^{3} \: (near.tenth)[/tex]