Respuesta :

Answer:

Step-by-step explanation:

Area of the figure = area of the down triangle + area of trapezium + area of the upper triangle

Down triangle:

Base b = 8 in

Height = 6 in

[tex]Area = \frac{1}{2}bh\\=\frac{1}{2}*8*6\\\\=4*6[/tex]

= 24 in²

Trapezium:

bases a = 4 in & b = 6 in

Height h =  5 in

[tex]Area=\frac{(a+b)h}{2}\\\\=\frac{(4+6)*5}{2}\\\\=\frac{10*5}{2}\\\\=5*5[/tex]

= 25 in²

Area of the upper triangle:

Base b = 6 in

Height = (8 - 5) = 3 in

[tex]Area=\frac{1}{2}bh\\\\=\frac{1}{2}*6*3\\\\=3*3[/tex]

= 9 in²

Area of the figure = 24 + 25 + 9 = 58 in²

Answer:

58 in²

Step-by-step explanation:

Separate the figure into 3 separate shapes:

  • The triangle at the bottom
  • The triangle at the top
  • The trapezoid in the middle

The find the formulas you will use to solve each one:

  • Trapezoid: [tex][h(b1 + b2)]0.5[/tex]
  • Triangles: [tex]0.5 (b * h)[/tex]

Plug in the values:

  • Triangle at the top: (8 x 6)0.5 = 24 in²
  • Trapezoid in the middle: [5(6 + 4)]0.5 = 25 in²
  • Triangle at the bottom: (8 x 6)0.5 = 9 in²

Then add up all of the values:

  • 24 + 25 + 9 = 58

Add the term:

  • 58 in²