Given Information:
Initial temperature of aluminum block = 26.5°C
Heat flux = 4000 w/m²
Time = 2112 seconds
Time = 30 minutes = 30*60 = 1800 seconds
Required Information:
Rise in surface temperature = ?
Answer:
Rise in surface temperature = 8.6 °C after 2112 seconds
Rise in surface temperature = 8 °C after 30 minutes
Explanation:
The surface temperature of the aluminum block is given by
[tex]T_{surface} = T_{initial} + \frac{q}{k} \sqrt{\frac{4\alpha t}{\pi} }[/tex]
Where q is the heat flux supplied to aluminum block, k is the conductivity of pure aluminum and α is the diffusivity of pure aluminum.
After t = 2112 sec:
[tex]T_{surface} = 26.5 + \frac{4000}{237} \sqrt{\frac{4(9.71\times 10^{-5}) (2112)}{\pi} }\\\\T_{surface} = 26.5 + \frac{4000}{237} (0.51098)\\\\T_{surface} = 26.5 + 8.6\\\\T_{surface} = 35.1\\\\[/tex]
The rise in the surface temperature is
Rise = 35.1 - 26.5 = 8.6 °C
Therefore, the surface temperature of the block will rise by 8.6 °C after 2112 seconds.
After t = 30 mins:
[tex]T_{surface} = 26.5 + \frac{4000}{237} \sqrt{\frac{4(9.71\times 10^{-5}) (1800)}{\pi} }\\\\T_{surface} = 26.5 + \frac{4000}{237} (0.4717)\\\\T_{surface} = 26.5 + 7.96\\\\T_{surface} = 34.5\\\\[/tex]
The rise in the surface temperature is
Rise = 34.5 - 26.5 = 8 °C
Therefore, the surface temperature of the block will rise by 8 °C after 30 minutes.