A stainless steel ball (rho = 8055 kg/m3, cp = 480 J/kg·K) of diameter D = 0.21 m is removed from the oven at a uniform temperature of 350°C. The ball is then subjected to the flow of air at 1 atm pressure and 30°C with a velocity of 6 m/s. The surface temperature of the ball eventually drops to 250°C. Determine the average convection heat transfer coefficient during this cooling process and estimate how long this process has taken. The average surface temperature is 300°C, and the properties of air at 1 atm pressure and the free stream temperature of 30°C are Pr = 0.7282, μs at 300°C = 2.934 × 10–5 kg/m·s, μ[infinity] = 1.872 × 10–5 kg/m·s, v = 1.608 × 10–5 m2/s, and k = 0.02588 W/m·°C.

Respuesta :

Answer:

Explanation:

The complete detailed  explanation which answer the question efficiently is shown in the attached files below.

I hope it helps a lot !

Ver imagen ajeigbeibraheem
Ver imagen ajeigbeibraheem
Ver imagen ajeigbeibraheem
Ver imagen ajeigbeibraheem

Answer:

Average convection heat transfer coefficient, [tex]\dot{Q_{ave} } = 832.42 W[/tex]

time taken for the process, [tex]\triangle t = 37.9 min[/tex]

Explanation:

The average convection heat transfer rate is calculated using the formula:

[tex]\dot{Q_{ave} } = h A_{s} (T_s - T_{\infty} )[/tex]

The surface area of the steel ball is given by :

[tex]A_{s} = \pi D^{2} \\A_{s} = \pi * 0.21^{2} \\A_{s} = 0.139 m^2[/tex]

Free stream temperature, [tex]T_{\infty} = 30^{0} C[/tex]

Initial temperature of the ball, T₁ = 350°C

Final temperature of the ball, T₂ = 250°C

Average surface temperature of the ball:

[tex]T_s = \frac{T_1 + T_2}{2} \\T_s = \frac{350 + 250}{2}\\T_s = 300^{0} C[/tex]

Velocity of air, V = 6 m/s

Diameter of the ball, D = 0.21 m

Viscosity, v = 1.608 * 10⁻⁵ m²/s

Reynold number Re can be calculated by using the formula: [tex]Re = \frac{VD}{v}[/tex]

[tex]Re = \frac{6 * 0.21}{1.608 * 10^{-5} }[/tex]

Re = 78358.21

The Nusselt number can be calculated by using the equation:

[tex]Nu = 2 + (0.4Re^{0.5} + 0.06Re^{0.67} ) (Pr^{0.4}) (\frac{\mu_{\infty}}{\mu_s})^{0.25} \\Nu = 2 + (0.4*78358.21^{0.5} + 0.06*78358.21^{0.67} ) (0.7282^{0.4}) (\frac{1.872*10^{-5}}{2.934*10^{-5}})^{0.25}[/tex]

Nu = 179.95

The heat transfer coefficient can be calculated using the formula:

[tex]h = \frac{k* Nu}{D} \\h = \frac{0.02588* 179.95}{0.21}\\h = 22.18 W/m^2 k[/tex]

[tex]\dot{Q_{ave} } = h A_{s} (T_s - T_{\infty} )[/tex]

[tex]\dot{Q_{ave} } = 22.18 * 0.139 (300 -30 )\\\dot{Q_{ave} } = 832.42 W[/tex]

The time taken for the process, [tex]\triangle t = \frac{Q_{total} }{\dot{Q_{ave} }}[/tex]

[tex]Q_{total} = mc_{p} (T_1 - T_2)[/tex]

Volume of the steel ball, [tex]V = \frac{\pi * D^3 }{6}[/tex]

[tex]V = \frac{\pi * 0.21^3 }{6}[/tex]

V = 0.0049 m³

Density of steel, [tex]\rho = 8055 kg/m^{3}[/tex]

Mass of the steel, [tex]m = \rho V[/tex]

m = 8055*0.0049

m = 39.47 kg

Total rate of heat transfer: [tex]Q_{total} = mc_{p} (T_1 - T_2)[/tex]

Specific heat capacity of steel ball, [tex]c_p[/tex] = 480 J/kg

[tex]Q_{total} = 39.47 *480 (350 - 250)[/tex]

[tex]Q_{total} = 1894560 J[/tex]

[tex]\triangle t = \frac{Q_{total} }{\dot{Q_{ave} }}[/tex]

[tex]\triangle t = 1894560/832.42\\\triangle t = 2275.97s\\\triangle t = 2275.97/60\\\triangle t = 37.9 min[/tex]