Respuesta :
Answer:
See explaination
Explanation:
import random
import matplotlib.pyplot as plt
import numpy as np
def rSquared(obs, predicted):
error = ((predicted - obs)**2).sum()
mean = error/len(obs)
return 1 - (mean/np.var(obs))
def generateData(a, b, c, d, e, xvals):
for x in xvals:
calcVal= a*x**4 + b*x**3 + c*x**2 + d*x + e
yvals.append(calcVal+ random.gauss(0, 35))
xvals = np.arange(-10, 11, 1)
yvals= []
a, b, c, d, e = 3, 1, 3, 4, 5
generateData(a, b, c, d, e, xvals)
for i in range (5):
model= np.polyfit(xvals, yvals, i)
estYvals = np.polyval(model, xvals)
print('R-Squared:', rSquared(yvals, estYvals))
plt.plot(xvals, yvals, 'r', label = 'Actual values')
plt.plot(xvals, estYvals, 'bo', label = 'Predicted values')
plt.xlabel('Variable x values')
plt.ylabel('Calculated Value of Polynomial')
plt.legend()
plt.show()
Answer:
Check the explanation
Explanation:
Consider a data array x and y be the sum of the random variable(with gaussian distribution) and the 4th degree polynomial.
We shall fit the data arrays X and Y to the 4th degree polynomial.
import random
import numpy as np
import matplotlib.pyploy as plt
poly_coeff=[3,1,3,4,5]
poly=np.poly1d(poly_coeff)
y=poly(random.randint(0,10))+ min(10, max(0, random.gauss(2, 3)))
x=np.arange(-10,10)
curvefit=np.polyfit(x,y,4)
y_new=np.polyfit(curvefit,x)
plt.plot(x,y, ‘-or’)
plt.plot(x,y_new, ‘-b’)
plt.show()