Suppose ABC is a right triangle with sides a, b, and c and right angle at C. Find the unknown side length using the Pythagorean theorem and

then find the values of the six trigonometric functions for angle B.

a = 9, C = 41

The unknown side length bis

(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)

Respuesta :

Answer: b = 40

sin B = [tex]\frac{40}{41}[/tex]

cos B = [tex]\frac{9}{41}[/tex]

tg B = [tex]\frac{40}{9}[/tex]

sec B = [tex]\frac{41}{9}[/tex]

csc B = [tex]\frac{41}{40}[/tex]

cot B = [tex]\frac{9}{40}[/tex]

Step-by-step explanation: If the right angle is at C, then the hypothenuse is side c = 41.

Using Pythagorean Theorem:

hypotenuse² = side² + side²

41² = 9² + b²

b = [tex]\sqrt{1681 - 81}[/tex]

b = 40

The side b length is 40,

The trigonometric functions of a right triangle are:

1) Sine = [tex]\frac{opposite side}{hypotenuse}[/tex]

sin (B) = [tex]\frac{b}{c}[/tex]

Sin(B) = [tex]\frac{40}{41}[/tex]

2) Cosine = [tex]\frac{adjacent side}{hypotenuse}[/tex]

cos (B) = [tex]\frac{a}{c}[/tex]

cos (B) = [tex]\frac{9}{41}[/tex]

3) Tangent = [tex]\frac{opposite}{adjacent}[/tex]

tg (B) = [tex]\frac{b}{a}[/tex]

tg (B) = [tex]\frac{40}{9}[/tex]

4) Sec = [tex]\frac{1}{cos}[/tex]

sec(B) = [tex]\frac{c}{a}[/tex]

sec(B) = [tex]\frac{41}{9}[/tex]

5) Cosecant = [tex]\frac{1}{sin}[/tex]

csc(B) = [tex]\frac{c}{b}[/tex]

csc(B) = [tex]\frac{41}{40}[/tex]

6) Cotangent = [tex]\frac{1}{tg}[/tex]

cot(B) = [tex]\frac{a}{b}[/tex]

cot(B) = [tex]\frac{9}{40}[/tex]