Answer:
[tex]\Delta G_{rxn} = -50.7 \ kJ/mol[/tex]
Explanation:
The equation of the reaction is given as:
[tex]ATP_{(aq)} + H_2O_{(l)} \to ADP_{(aq)} + HPO_4^{-2}_{(aq)}[/tex]
Given that:
[ATP] = 5.00 mM
[ADP] = 0.40 mM
[HPO₄²⁻] = 5.00 mM
converting mM to M; we have:
5.00 mM = 5.00 mM × 1 M/ 1000 mM
= 0.005 M
0.40 mM = 0.40 mM × 1 M/ 1000 mM
= 0.0004 M
The equilibrium constant [tex]K_{eq}[/tex] is:
[tex]K_{eq} = \frac{(0.0004)(0.005)}{(0.005)}[/tex]
[tex]K_{eq}[/tex] = 0.0004
Given that:
[tex]\Delta G^ {^0} _{rxn} =-30.5 \ kJ/mol[/tex]
To Joule (J) ; we have
[tex]\Delta G^ {^0} _{rxn} =-30.5 \ kJ/mol * \frac{1000 \ J}{1 \ kJ}[/tex]
[tex]\Delta G^ {^0} _{rxn} =-30.5 *10^3 \ J/mol[/tex]
Temperature T = 37° C = (37+ 273)K = 310 K
[tex]\Delta G_{rxn}[/tex] is then calculated by using the equation:
[tex]\Delta G_{rxn} = \Delta G^0 _{rxn}+ RT In \ K_{eq}[/tex]
[tex]\Delta G_{rxn} = (-30.5*10^3 \ J/mol})+ (8.314 \ J/mol.K)(310) \ In \ (0.0004)[/tex]
[tex]\Delta G_{rxn} = -50.665.23 \ J/mol[/tex]
[tex]\Delta G_{rxn} = -50.7 \ kJ/mol[/tex]
Since [tex]\Delta G_{rxn}[/tex] is negative; the hydrolysis of ATP is spontaneous .