Respuesta :

znk

Answer:

x = 14  

Step-by-step explanation:

Assume your diagram is like the one below.

The intersecting secant angles theorem states, "When two secants intersect outside a circle, the measure of the angle formed is one-half the difference between the far and the near arcs."

For your diagram, that means

[tex]\begin{array}{rcl}m\angle L &=&\dfrac{1}{2} \left(m \widehat {JM} - m\widehat {PQ}\right)\\\\(3x + 13)^{\circ}& = &\dfrac{1}{2} \left[(8x + 48)^{\circ} - (5x - 20)^{\circ}\right]\\\\3x + 13& = &\dfrac{1}{2}(8x + 48 - 5x + 20)\\\\3x + 13& = &\dfrac{1}{2}(3x + 68)\\\\6x + 26 & = & 3x + 68\\6x & = & 3x + 42\\3x & = & 42\\x & = & \mathbf{14}\\\end{array}[/tex]

Check:

[tex]\begin{array}{rcl}(3\times14 + 13) & = &\dfrac{1}{2} \left[(8\times14 + 48)^{\circ} - (5\times14 - 20)^{\circ}\right]\\\\42 + 13& = &\dfrac{1}{2}(112 + 48 - 70 + 20)\\\\55& = &\dfrac{1}{2}(110)\\\\55 & = & 55\\\end{array}[/tex]

It checks.

Ver imagen znk