contestada

Which is the polar form of the parametric equations x=2 cos theta and y= 2 sin theta ?

A) r= 2
B) r= 2 theta
C) r= 4 cos theta sin theta
D) r= 4 cos^2 theta + 4 sin^2 theta

Respuesta :

Answer:

B) [tex]r = 2, \theta[/tex]

Step-by-step explanation:

The polar form is:

[tex]r = \sqrt{x^{2}+y^{2}}[/tex]

[tex]r = \sqrt{4\cdot \cos^{2}\theta + 4\cdot \sin^{2}\theta}[/tex]

[tex]r = 2\cdot \sqrt{\cos^{2}\theta + \sin^{2}\theta}[/tex]

[tex]r = 2\cdot \sqrt{1}[/tex]

[tex]r = 2[/tex]

[tex]\theta = \tan^{-1}\left(\frac{y}{x} \right)[/tex]

[tex]\theta = \tan^{-1}\left(\frac{2\cdot \sin \theta}{2\cdot \cos \theta} \right)[/tex]

[tex]\theta = \tan^{-1}\left(\tan \theta\right)[/tex]

[tex]\theta = \theta[/tex]