Answer:
B) [tex]r = 2, \theta[/tex]
Step-by-step explanation:
The polar form is:
[tex]r = \sqrt{x^{2}+y^{2}}[/tex]
[tex]r = \sqrt{4\cdot \cos^{2}\theta + 4\cdot \sin^{2}\theta}[/tex]
[tex]r = 2\cdot \sqrt{\cos^{2}\theta + \sin^{2}\theta}[/tex]
[tex]r = 2\cdot \sqrt{1}[/tex]
[tex]r = 2[/tex]
[tex]\theta = \tan^{-1}\left(\frac{y}{x} \right)[/tex]
[tex]\theta = \tan^{-1}\left(\frac{2\cdot \sin \theta}{2\cdot \cos \theta} \right)[/tex]
[tex]\theta = \tan^{-1}\left(\tan \theta\right)[/tex]
[tex]\theta = \theta[/tex]