Answer:
85.62 m
168.75 years
101.04 years
Explanation:
[tex]L_0[/tex] = Length of ship = 143 m
v = Velocity of ship = 0.8c
c = Speed of light
s = Distance to Boralis orbit = 135 ly
Gamma value
[tex]\gamma=\dfrac{1}{\sqrt{1-\dfrac{v^2}{c^2}}}\\\Rightarrow \gamma=\dfrac{1}{\sqrt{1-\dfrac{0.8^2c^2}{c^2}}}\\\Rightarrow \gamma=1.67[/tex]
Length contraction is given by
[tex]L=\dfrac{L_0}{\gamma}\\\Rightarrow L=\dfrac{143}{1.67}\\\Rightarrow L=85.62\ m[/tex]
The length is 85.62 m
Time taken
[tex]t=\dfrac{s}{v}\\\Rightarrow t=\dfrac{135}{0.8}\\\Rightarrow t=168.75\ years[/tex]
Time taken from the perspective one Earth is 168.75 years
Time dilation is given by
[tex]t'=\dfrac{t}{\gamma}\\\Rightarrow t'=\dfrac{168.75}{1.67}\\\Rightarrow t'=101.04\ years[/tex]
The time taken from the perspective of the ship is 101.04 years