Respuesta :
Answer:
In primary cells, an electric potential develops through chemical action between the plates within the cell. Positively charged ions of zinc enter the acid and free electrons released from zinc atoms collect on the zinc plate, which results in a negative charge. At the same time, positively charged ions of hydrogen from the acid remove free electrons from the copper plate, which becomes positively charged. Through a conducting material connecting the plates, free electrons move from the zinc plate to the copper plate as long as the chemical reaction lasts.
Dry cells also develop electric potential via chemical actions within the cell. Free electrons removed from the carbon rod collect on a zinc can. The rod exhibits a positive charge and the can becomes negatively charged; this allows for an electric potential to develop between these two items. Through a conducting material connecting the can to the rod, free electrons move from the can to the rod as long as the conducting path exists.
Electric generators develop an electric potential via magnetic induction. Moving a conducting rod through a magnetic field that exists between the poles of a horseshoe magnet causes an electric potential to be set up in the rod. Free electrons move through this rod from one end to the other for as long as movement of the rod is maintained. The direction of this movement depends on whether the rod is moved across the lines of force in the magnetic field in either the opposite direction or the same direction. Generators usually consist of multiple conductors mounted on a cylinder that rotates in a magnetic field.
Thermocouples utilize heat to develop an electric potential. Two strips of different metals are connected at one end to form a junction and the other ends are kept apart. A heat source is applied to the junction; this causes each metal strip’s temperature to rise at the junction. The free ends aren’t as hot and electric charges are produced at these free ends. Because the strips consist of different materials, there's a difference of potential between these free ends; when connected by a conducting wire, the electrons can move through the pathway. The voltage that's produced will become greater as the difference in temperature between the free ends and the junction increases.
a. Increase
b. Decrease
c. Decrease
Since 1 Btu = 0.293 Wh, dividing the given amount of Wh by 0.293 will convert this amount into Btu. Therefore, 0.8 ÷ 0.293 = 2.73 Btu
365 days × 10 hours × 40 W = 146,000 Wh or 146 kWh
Explanation:
Penn Foster
Electric potential develops in primary/dry cells through a chemical reaction between the cell plates of the cell. free electrons move from the zinc plate to the copper plate through a conducting material.
Electric potential develops in Generators via magnetic induction i.e. the movement of a conducting rod through the magnetic field between the poles of the horseshoe magnets produces Electric potential in Generators.
Electric potential develops in thermocouples via heat transfer ; A heat source is applied to the connecting end of the thermocouple strips and this will cause the production electric charges ( potential ) at the free ends
3) Identifying effect of each scenerio
a) The resistance of an electric current will increase when the length of the conductor increases
b) The resistance of an electric current through a body will decrease when the conductor has a larger cross-section
c) The resistance of an electric current through a body will decrease when the temperature of the conductor is cooled
4) The amount of heat lost as heat in Btu = 2.73 Btu
amount of heat lost = 0.8 Wh
convert to Btu = 0.8 Wh / 0.293 = 2.73 Btu ( note : 1 Btu = 0.293 Wh )
5) The amount of of energy used by a 40 W bulb for 365 days = 146 kWh
Power of bulb = 40 W
Run time = 10 hours * 365 days
∴ amount of energy used = 3650 * 40 = 146 * 10^3 Wh = 146 kWh
Hence the answer to your question are are listed above
learn more about electric potential : https://brainly.com/question/23980243
