Respuesta :

Answer:

Total number of arrangements = 1,663,200

Step-by-step explanation:

Given:

11 - letter

FIRECRACKER

F = 1

I = 1

R = 3

E = 2

C = 2

A =1

K = 1

Find:

Total number of arrangements = ?

Computation:

Note: Repeated letter will be avoid.

[tex]Number\ of\ arrangements = \frac{!11}{!3 \times !2 \times !2}\\\\Number\ of\ arrangements = \frac{!11}{!3 \times !2 \times !2} \\\\Number\ of\ arrangements = \frac{11 \times 10 \times 9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3}{3 \times 2 \times 2 } \\\\Number\ of\ arrangements = 1,663,200[/tex]

Total number of arrangements = 1,663,200