Water is the working fluid in a Rankine cycle. Superheated vapor enters the turbine at 8 MPa, 560°C and the turbine exit pressure is 8 kPa. Saturated liquid enters the pump at 8 kPa. The heat transfer rate to the working fluid in the steam generator is 26 MW. The isentropic turbine efficiency is 88%, and the isentropic pump efficiency is 82%. Cooling water enters the condenser at 18°C and exits at 36°C with no significant change in pressure. Step 1 Determine the net power developed, in kW. Determine the thermal efficiency for the cycle. Type your answer here

Respuesta :

Answer:

1. The net power developed=9370.773KW

2. Thermal Efficiency= 0.058

Explanation

Check attachment

Ver imagen igeclement43
Ver imagen igeclement43
Ver imagen igeclement43

The presence of the steam generator, improves the performance of the

cycle, such that the thermal efficiency is higher.

  • The net power developed is approximately 9.3403 MW
  • The thermal efficiency of the cycle is approximately 35.9 %

Reasons:

State 1 - 2; Process through the turbine

From steam tables, at 8 MPa, 560°C, we have;

h₁ = 3545.3 kJ/kg

s₁ = s₂ = 6.9072 kJ/(kg·K)

The turbine exit pressure, p₂ = 8 kPa (given)

[tex]\displaystyle x_2 = \mathbf{\frac{s_2 - s_f}{s_g - s_f}}[/tex]

[tex]s_g[/tex] = 8.2287

[tex]s_f[/tex] = 0.5926

[tex]\displaystyle x_2 = \frac{6.9072 - 0.5926}{8.2287 - 0.5923} \approx 0.8269[/tex]

[tex]h_{2s} = h_f + x_2 \cdot h_{fg}[/tex] = 173.88 + 0.8269 × 2403.1 ≈ 2161.00339

[tex]h_{2s}[/tex] = 2161.00339 kJ/kg

State 3 is saturated liquid enters the pump, h₃ = 173.88 kJ/kg

p₃ = 8 kPa (given)

h₃ = [tex]h_{f3}[/tex] = 173.88 kJ/kg

State 4 to state 1; The boiler

p₄ = The pressure in the boiler = p₁ = 8 MPa

[tex]h_{4s}[/tex] = h₃ + v₃·(p₄ - p₃)

At 8 kPa, saturated liquid, v₃ = [tex]v_{f3}[/tex] = 1.0084 × 10⁻³ m³/kg

Therefore;

[tex]h_{4s}[/tex] = 173.88 kJ/kg + 1.0084 × 10⁻³ m³/kg × (8 MPa - 0.008 MPa) = 181.94 kJ/kg

[tex]\displaystyle Turbine \ efficiency, \ \eta_t = \mathbf{\frac{h_1 - h_2}{h_1 - h_{2s}}}[/tex]

Which gives;

[tex]\displaystyle0.88= \mathbf{\frac{3545.3 - h_2}{3545.3 - 2161.0339}}[/tex]

Which gives;

h₂ = 2327.15 kJ/kg

[tex]\displaystyle Pump \ efficiency, \ \eta_p = \frac{h_{4s} - h_3}{h_4 - h_3}[/tex]

Which gives;

[tex]\displaystyle 0.82= \frac{181.94 - 173.88}{h_4- 173.88}[/tex]

h₄ ≈ 183.71 kJ/kg

[tex]\displaystyle \frac{\dot Q_{in}}{\dot m} = \mathbf{ h_1 - h_4}[/tex]

[tex]\dot m \cdot ( h_1 - h_{4}) = \dot Q_{in}[/tex]

[tex]\displaystyle \dot m = \mathbf{ \frac{\dot Q_{in}}{ ( h_1 - h_{4})}}[/tex]

[tex]\dot Q_{in}[/tex] = 26 MW

Which gives;

[tex]\displaystyle \dot m = \frac{26,000}{ ( 3545.3- 183.71)} \approx 7.73[/tex]

The mass flowrate, [tex]\dot m[/tex] ≈ 7.73 kg/s

[tex]\displaystyle \mathbf{\frac{\dot W_t}{\dot m}} = h_1 - h_2[/tex]

[tex]\displaystyle \frac{\dot W_p}{\dot m} = \mathbf{h_4 - h_3}[/tex]

[tex]\dot W_{cycle} = \dot W_t - \dot W_p[/tex]

Therefore;

[tex]\dot W_{cycle} = \mathbf{\dot m \times ((h_1 - h_2) - (h_4 - h_3))}[/tex]

[tex]\dot W_{cycle}[/tex] ≈ 7.73 kg/s ×((3545.3 kJ/kg - 2327.15 kJ/kg) - (183.71 kJ/kg - 173.88 kJ/kg)) ≈ 9340.3 kW = 9.3403 MW

  • The net power developed, [tex]\dot W_{cycle}[/tex] ≈ 9.3403 MW

The thermal efficiency, η, is given as follows;

[tex]\displaystyle \eta =\frac{\dot W_{cycle}}{\dot Q_{in}} = \mathbf{\frac{(h_1 - h_2) - (h_4- h_3)}{h_1 - h_4}}[/tex]

Therefore;

[tex]\displaystyle \eta = \frac{((3545.3 - 2327.15) - (183.71 - 173.88)) }{3545.3 - 183.71} \approx 0.359 = 35.9\%[/tex]

  • The thermal efficiency, for the cycle, η ≈ 35.9%

Learn more about vapor power cycles here:

https://brainly.com/question/15311479

Ver imagen oeerivona