Respuesta :

Answer:

Surface area of prism is 382.5  sq. in.

Step-by-step explanation:

Total Surface area of prism = Sum of area of all faces

So, Area of triangle ABC = [tex]\frac{1}{2} \times Base \times height[/tex]

Area of triangle ABC =[tex]\frac{1}{2} \times AB \times BC[/tex]

Area of triangle ABC = [tex]\frac{1}{2} \times 9 \times 10 =45 in^2[/tex]

Area of triangle DEF = Area of triangle ABC =45 sq. in.

Area of rectangular base ACED=[tex]Length \times Breadth = AC \times CE=13.5 \times 9 =121.5[/tex]

Area of ABFD = [tex]Length \times Breadth = AB \times BF=9 \times 9 =81 sq. in.[/tex]

Area of CBFE=[tex]Length \times Breadth = CB \times BF=10 \times 9 =90 sq. in.[/tex]

Total Surface area of prism = Sum of area of all faces =45+45+121.5+81+90=382.5  sq. in.

Hence Surface area of prism is 382.5  sq. in.

Ver imagen wifilethbridge